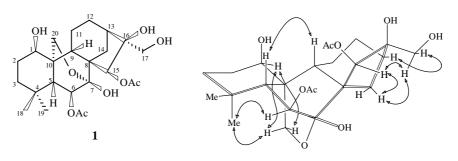
Two New ent-Kaurane Diterpenoids from Isodon japonica

Ji Xia ZHANG², Quan Bin HAN¹, Qin Shi ZHAO¹, Sheng Hong LI¹, Han Dong SUN¹*

¹Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

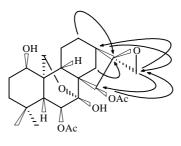

²Chemistry Department, Xinxiang Medical College, Xinxiang 453000

Abstract: Two new *ent*-kauranoids, named maoyecrystals A (1) and B (2), were isolated from the EtOAc extract of the dried leaves of *Isodon japonica* (Burman f.) Hara collected in Tongbai mountains, Henan Province. Their structures were determined on the basis of spectral data, especially by 2D NMR.

Keywords: Isodon japonica, ent-kauranoids, maoyecrystals A and B.

Isodon japonica (Burman f.) Hara has been used in folk medicine as anti-bacterial, inflammation disminishing and stomachic agents, even anthelmintic in many places of China and Japan¹. Moreover, its anticancer activities²⁻⁴ had been proved early in 1960's. Continuous phytochemical studies⁵⁻¹⁷ on this plant collected in different regions had revealed more than thirty *ent*-kauranoids. To find more active substances, we have carefully reinvestigated the chemical components of *I. japonica* (Burman f.) Hara collected in Tongbai mountains, Henan Province, which resulted to obtain two new *ent*-kauranoids, named maoyecrystals A (1) and B (2). Their structures were determined as 1β, 7β, 16β, 17-tetrahydroxy-6β, 15β-diacetoxy-7α, 20-epoxy-*ent*-kaurane (1) and 1β, 7β-dihydroxy-6β, 15β-diacetoxy-16β, 17: 7α , 20-diepoxy-*ent*-kaurane (2) by spectral methods. In this paper, the structure elucidation is presented.

Figure 1 Key ROESY correlations of compound 1



*E-mail: hdsun@mail.kib.ac.cn

Maoyecrystal A 1, colorless rhombic crystals (from acetone), $[\alpha]_D^{20.0}$ –63.64 (c 1.10, MeOH), mp: 149-151°C, had a molecular formula as $C_{24}H_{36}O_9$ determined by EIMS ($[M]^+$ m/z 468), HREIMS (calcd. 468.2359, found 468.2333) and ^{13}C NMR spectrum. Comparison of the ^{1}H and ^{13}C NMR spectra (see **Table 1**) with the reference's data indicated that **1** owned not only the 7β-hydroxy-7α, 20-epoxy-*ent*-kaurane skeleton including additionally oxygenated three methines, one methylene and one quaternary carbon, but also two acetoxyl groups which were located at C-6 and C-15 respectively, based on the HMBC correlations of H-6 (δ_H 6.23) with one quaternary carbon at δ_C 171.2, and H-15 (δ_H 5.91) with the other at δ_C 171.6. Similarly, the clearly observed $^1H_-^{13}C$ long-range correlations of H-1/C-5, H-1/C-9 and H-1/C-20 suggested the presence of OH-1. In the same way, the existence of OH-16 was proved by the coupling signals from H₂-12 and H₂-14 to the quaternary carbon (δ_C 80.8, due to C-16), and the presence of OH-17 was also established according to the obvious correlations of H₂-17 with C-15, and H-15 with C-17 in turn, which was confirmed by the ones of H₂-17 with C-13, and H-13 with C-17.

Finally, the relative configurations of the oxy-substituents were deduced by key interactions appeared in ROESY spectrum as exhibited in **Figure 1**. In detail, OH-1 was established to be β -oriented by the coupling of H-1 with H₂-20, and OAc-6 to be also in β -orientation by the clear cross peak of H-6/H₃-19. As for OH-16, it could be designated as β -orientation because the interactions of H₂-17/H-13 appeared distinctly while H-13 was absolutely α -oriented in all *ent*-kauranoids obtained so far, which was affirmed by the NOE correlations between H₂-17 with H-14 at $\delta_{\rm H}$ 2.60. Furthermore, the interaction of the same H-14 with H-15 indicated that H-15 must be α -oriented. Therefore, **1** was elucidated as 1β , 7β , 16β , 17-tetrahydroxy- 6β , 15β -diacetoxy- 7α , 20-epoxy-*ent*-kaurane, and named maoyecrystal A.

Figure 2 Key HMBC correlations of compound 2 (from H to C)

2

Maoyecrystal B 2, colorless prismatic crystals (in MeOH), $[\alpha]_D^{20.0}$ -64.44 (c 0.90, MeOH), mp: 201-203°C, gave a molecular ion peak at m/z 450 [M]⁺ in EIMS, corresponding to a molecular formula of $C_{24}H_{34}O_8$ which was confirmed by HREIMS (calcd. 450.2254, found 450.2246). By comparing the ¹³C NMR data of **2** with those of **1** (see **Table 1**), it was found that the two compounds were so similar that just few notable differences existed among the data for rings C and D, mainly at C-12, 16 and 17.

The signal of C-12 was recognized at δ_C 20.4 in the ¹³C NMR data of **1**, but replaced by a downfield shift at δ_C 25.7 in **2**. Moreover, the chemical shifts of C-16 (δ_C 80.8) and C-17 (δ_C 69.4) in **1** moved upfield to δ_C 74.6 and δ_C 48.5 in **2**, respectively. These alterations indicated that the condensation of neighboring 16 β -OH and 17-OH, which lost a molecule of H₂O, had taken place. That was why **2** was 18 amu less than **1**, and why the chemical shift of C-12 in **2** was obviously downfield than that in **1** and the chemical shifts of H₂-12 in **2** were obviously upfield than those in **1**, without γ -steric compression from 16 β -OH. At the same time, careful contrast of **2** to its analog, juhuanin A¹⁹, showed up that the two compounds had the similar structure unit of ring D, especially the unit of an oxirane between C-16 and C-17. In fact, the chemical shifts of

Table 1 1 H and 13 C NMR data^a of **1** and **2** (δ in ppm, J in Hz, C₅D₅N)

Position	1		2	
	δ _H (400MHz)	$\delta_{\scriptscriptstyle \! C}{}^{\scriptscriptstyle b}$	δ _H (500MHz)	$\delta_{\scriptscriptstyle m C}{}^{\scriptscriptstyle m b}$
1	4.16 (br. s, 1H)	65.4 (CH)	3.73 (br. s, 1H)	65.0 (CH)
2	2.17 (overlap, 2H)	27.8 (CH ₂)	1.76 (overlap, 1H)	27.5 (CH ₂)
			1.74 (overlap, 1H)	
3	2.65 (overlap, 1H)	34.5 (CH ₂)	2.28 (m, 1H)	34.2 (CH ₂)
	1.63 (overlap, 1H)		1.20 (overlap, 1H)	
4		34.1 (C)		33.8 (C)
5	2.73 (br. s, 1H)	51.0 (CH)	2.24 (d, 1H, 6.0)	50.8 (CH)
6	6.23 (br. s, 1H)	75.3 (CH)	5.83 (d, 1H, 6.0)	74.9 (CH)
7		96.1 (C)		95.6 (C)
8		51.9 (C)		52.5 (C)
9	3.81 (m, 1H)	39.0 (CH)	3.26 (d, 1Hd, 9.6, 4.4)	38.8 (CH)
10		41.0 (C)		40.7 (C)
11	2.50 (overlap, 1H)	15.5 (CH ₂)	2.10 (m, 1H)	15.6 (CH ₂)
	2.10 (overlap, 1H)		1.67 (overlap, 1H)	
12	3.00 (overlap, 1H)	20.4 (CH ₂)	1.97 (m, 1H)	25.7 (CH ₂)
	2.13 (overlap, 1H)		1.59 (m, 1H)	
13	3.03 (overlap, 1H)	36.8 (CH)	1.78 (overlap, 1H)	37.5 (CH)
14	2.60 (overlap, 1H)	26.0 (CH ₂)	2.51 (dd, 1H, 12.5, 9.0)	28.1 (CH ₂)
	2.50 (overlap, 1H)		2.19 (d, 1H, 12.5)	
15	5.91 (br. s, 1H)	75.9 (CH)	5.97 (s, 1H)	77.0 (CH)
16		80.8 (C)		74.6 (C)
17	4.88 (d, 1H, 8.0)	69.4 (CH ₂)	2.94 (d, 1H, 5.0)	48.5 (CH ₂)
	4.57 (d, 1H, 8.0)		2.77 (d, 1H, 5.0)	
18	1.43 (s, 3H)	33.1 (CH ₃)	1.00 (s, 3H)	32.8 (CH ₃)
19	1.63 (s, 3H)	23.5 (CH ₃)	1.22 (s, 3H)	23.1 (CH ₃)
20	4.59 (br. d, 1H, 12.4)	66.3 (CH ₂)	4.13 (br. s, 2H)	66.0 (CH ₂)
	4.55 (br. d, 1H, 12.4)			
6-COCH ₃		171.2 (C)		170.4 (C)
6-COCH ₃	2.50 (s, 3H)	21.6 (CH ₃)	2.03 (s, 3H)	21.2 (CH ₃)
15-COCH ₃		171.6 (C)		171.0 (C)
15-COCH ₃	2.55 (s, 3H)	22.0 (CH ₃)	2.16 (s, 3H)	21.5 (CH ₃)

^aThe data were measured with reference to TMS

C-12, 16, and 17 in jiuhuanin A were similar to those in **2** and occurred in file at δ_C 26.3, δ_C 73.8 and δ_C 48.0. So, it was further evidenced that the condensation existed. This conclusion could be also confirmed by HMBC cross-peaks of H₂-17/C-13 and C-15, as

^bThe ¹³C NMR data were measured in 125MHz

well as by those from H_2 -12 and H_2 -14 to C-16 (see **Figure 2**). Thus, **2** was finally elucidated as 1β , 7β -dihydroxy- 6β , 15β -diacetoxy- 16β , 17: 7α , 20-diepoxy-*ent*-kaurane, and named maoyecrystal B.

Acknowledgments

The authors wish to thank all members of the analytical group of Phytochemistry Laboratory of Kunming Institute of Botany, Academia Sinica, for the measurement of spectral data.

References

- H. D. Sun, Y. L. Xu, B. Jiang, Diterpenoids from Isodon Species, Science Press, Beijing, 2001, pp. 2-3.
- 2. T. Arai, Y. Koyama, T. Suenaga, H. Kaji, Chemnotherapy, 1961, 9, 404.
- 3. T. Arai, Y. Koyama, T. Morita, H. Kaji, Chemnotherapy, 1961, 9, 403.
- 4. T. Arai, Y. Koyama, T. Suenaga, T. Morita, Chemnotherapy, 1962, 10, 197.
- 5. E. Fujita, T. Fujita, M. Shibuya, Tetrahedron Letters, 1977, 3153.
- 6. Y. Yamada, N. Sako, E. Ando, M. Yamada, H. Kikuzaki, T. Yamamoto, *Biosci Biotechnol Biochem*, **1999**, *63* (3), 524.
- E. Fujita, T. Fujita, M. Taoka, H. Katayama, M. Shibuya, Chem. Pharm. Bull., 1973, 21 (6), 1357.
- 8. E. Fujita, M. Taoka, Y. Nagao, T. Fujita, J. Chem. Soc. Perkin Trans. I, 1973, 1760.
- 9. E. Fujita, T. Fujita, M. Shibuya, Chem. Pharm. Bull., 1968, 16, 1573.
- E. Fujita, T. Fujita, Y. Okada, S. Nakamura, M. Shibuya, Chem. Pharm. Bull., 1972, 20 (11), 1377.
- Q. Z. Zhao, J. H. Chao, H. Q. Wang, H. D. Sun, Zhongcaoyao (Chinese Traditional and Herbal Drugs), 1984, 15 (2), 1.
- 12. I. Kubo, T. Kamikawa, T. Kubota, Tetrahedron, 1974, 30, 615.
- 13. Q. Z. Zhao, J. H. Chao, H. Q. Wang, H. D. Sun, *Zhongcaoyao (Chinese Traditional and Herbal Drugs)*, **1984**, *15* (2), 49.
- J. C. Li, C. J. Liu, X. Z. An, M. T. Wang, T. Z. Zhao, S. Z. Yu, G. S. Zhao, R. F. Chen, *Acta Pharmaceutica Sinica*, 1982, 17 (9), 682.
- 15. M. T. Wang, T. Z. Zhao, J. C. Li, C. J. Liu, X. Z. An, Acta Chemica Sinica, 1987, 45, 871.
- C. J. Liu, J. C. Li, X. Z. An, R. M. Cheng, F. Z. Shen, Y. L. XU, D. Z. WANG, *Acta Pharmaceutica Sinica*, 1982, 17 (10), 750.
- 17. F. M. Xu, H. P. Hu, Z. Q. Wang, Zhongguozhongyaozazi (China Journal of Chinese Materia Medica), 1996, 21 (11), 678.
- 18. X. R. Wang, H. D. Sun, S. Ueda, T. Fujita, *Acta Botanica Sinica*, **1994**, *36* (9), 733.
- 19. Z. Q. Wang, X. R. Wang, J. G. Dong, X. W. Wang, Acta Botanica Sinica, 1986, 28 (2), 185.

Received 22 February, 2002